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Abstract—Understanding the characteristic morphology of
our brain remains a challenging, yet important task in human
evolution, developmental biology, and neurosciences. Math-
ematical modeling shapes our understanding of cortical
folding and provides functional relations between cortical
wavelength, thickness, and stiffness. Yet, current mathema-
tical models are phenomenologically isotropic and typically
predict non-physiological, periodic folding patterns. Here we
establish a mechanistic model for cortical folding, in which
macroscopic changes in white matter volume are a natural
consequence of microscopic axonal growth. To calibrate our
model, we consult axon elongation experiments in chick
sensory neurons. We demonstrate that a single parameter,
the axonal growth rate, explains a wide variety of in vitro
conditions including immediate axonal thinning and gradual
thickness restoration. We embed our axonal growth model
into a continuum model for brain development using axonal
orientation distributions motivated by diffusion spectrum
imaging. Our simulations suggest that white matter
anisotropy—as an emergent property from directional axon-
al growth—intrinsically induces symmetry breaking, and
predicts more physiological, less regular morphologies with
regionally varying gyral wavelengths and sulcal depths.
Mechanistic modeling of brain development could establish
valuable relationships between brain connectivity, brain
anatomy, and brain function.

Keywords—Neuromechanics, Brain development, Cortical

folding, Mechanotransduction, Growth, Symmetry breaking.

MOTIVATION

During the third trimester of gestation, our brain
grows rapidly in surface area and begins to take on the
characteristic wrinkled appearance of the adult human
brain.29 While the benefits of this folding, the increase

in information processing capacity,27 are widely ap-
preciated, the mechanism of how it arises is still under
investigation.49 Also unknown is the exact role that
cortical folding plays in the function of the brain, al-
though research has indicated that abnormal folding
can be associated with mental and psychological
problems including autism34 and schizophrenia.45 A
deeper understanding of the process of cortical folding
and its relationship to the workings of the healthy
brain could lead to improved diagnostics, treatments,
and interventions for folding abnormalities in the dis-
eased brain.

While some folds, known as the primary gyri and
sulci, are located fairly consistently across individuals
of the same species, secondary and tertiary folds
exhibit a more varied pattern.6 The consistency of
primary folding has been attributed to specific
heterogeneities including spatial or temporal variations
in growth.58 The variation of secondary and tertiary
folding is thought to be an instability phenomenon
triggered by some form of stress in the developing
brain.6 During the later stages of development, when
primary folds are already in place,23 the formation and
loss of cortico-cortical connections may alter the
cortical thickness and reshape existing folds, par-
ticularly in certain pathologies including autism25 and
schizophrenia.45

One of the earliest theories of cortical folding
posited the spatial constraint of the skull as the origin
of this stress. Removing parts of the skull from fetal
sheep disproved this idea.4 The first purely mechanical
theories of convolutional development attributed this
stress to differential growth, either between the six
cortical layers42 or between the cortex and the under-
lying substrate.53 While mechanically sound, this the-
ory crucially relied on an unrealistically large stiffness
contrast between gray and white matter and was
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therefore largely ignored by neurophysiologists. The
second prominent theory suggested that axons, the
main component in white matter tissue, cause stress
and create folding by pulling functionally connected
regions topologically closer together.55 Yet, this con-
cept failed to accurately predict residual stress patterns
in the developing brain.58 Despite these inconsisten-
cies, the hypotheses of differential growth and axonal
tension remain the most popular theories for cortical
folding among biophysicists. Neurobiologists, howev-
er, consider almost exclusively gyrogenetic theories,
which attribute folding to a regional variation in ge-
netic control.41,47,56

A recent improvement to the differential growth
theory replaced substrate elasticity by isotropic, stress-
driven subcortical growth and achieved more realistic
residual stress patterns.5 Isotropic growth, however, is
only capable of producing regular sinusoidal folds, un-
like the intricate and diverse folding patterns seen in the
humanbrain.11 In fact, whitematter has a natural source
of anisotropy, the axon, which suggests a transversely
isotropic constitutive model with a pronounced
response along the preferred axonal orientation.57

Axons are neural processes that connect neuronal
cell bodies and transmit information between them.44

Surrounded by a thick dielectric layer, the myelin
sheath, axons make up the majority of the white matter
tissue in our brain. During early development, axons
grow in length to form connections between different
regions of the brain.29 As those regions move closer
together or further apart, axons experience what has
been termed ‘‘towed growth’’, growth or retraction to
maintain a desired level of axonal tension.8,14 At this
time, the axons are still unmyelinated—their myelin
sheaths form later, after primary folding is completed.

Figure 1 illustrates the stretch and intercalation
model of axonal growth.50Axons aremade upof densely
packedmicrotubules and neurofilaments surrounded by
an actin cortex. Cross-linking proteins stabilize these
microtubules and generate a homeostatic equilibrium
state of axonal tension.20 Chronic perturbations away
from this equilibrium state activate mechanotransduc-
tion pathways including stretch-activated calcium
channels to increase protein synthesis and transport
along the axon.50 Within a few hours, stretched axons
add new material along their length to recover their
initial thickness. The axonal growth rate, a critical pa-
rameter in white matter growth, is therefore limited by
intracellular mass production and transport.36

Here we hypothesize axonal growth plays a central
role in modulating brain surface morphology. We test
this hypothesis using a multiscale computational
model of differential growth in which stretch-induced
changes in axonal length on the microscopic scale
translate into anisotropic white matter growth on the

macroscopic scale. The axonal orientation, which
varies throughout our brain, is an important feature of
this model: it naturally induces symmetry breaking and
creates physiological, irregular surface morphologies.
Understanding the importance of axonal growth will
shed light on the two competing theories of cortical
folding, axonal tension and differential growth, and
combine both mechanisms in a unified theory for gy-
rogenesis in the developing brain.

METHODS

Continuum Model of the Growing Brain

We model cortical folding using the nonlinear field
theories of mechanics supplemented by the theory of
finite growth.2 To represent large deformations during
brain development, we introduce the deformation map
u. At any given time t during brain development, u
maps physical particles X in the ungrown configuration
onto particles x ¼ u ðX; tÞ in the grown configuration.
We adopt the concept of fictitious, incompatible con-
figurations, and decompose the gradient of this map-
ping, F ¼ rXu, into an elastic part Fe and a growth
part Fg,43

F ¼ rXu ¼ Fe $ Fg : ð1Þ

The total change in tissue volume is defined by the
Jacobian of the deformation gradient,

stretch

actin
filaments

microtubules mitochondria

lengthened added
microtubules mitochondria

FIGURE 1. Stretch and intercalation model of axonal growth.
Axons respond to overstretch through immediate lengthening
and thinning. Overstretch and thinning activate mechan-
otransduction pathways, which trigger the creation of new
material along the axon, and the axon gradually recovers its
initial thickness. Intracellular mass production and transport
are the rate limiting factors of axonal growth.
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J ¼ det ðFÞ ¼ Je Jg ; ð2Þ

which we again decompose into an elastic volume
change Je ¼ det ðFeÞ and volume growth Jg ¼
det ðFgÞ. For Jg 6¼ 1, the growing brain acts like a
thermodynamically open system with a non-constant
mass, and the associated enhancements of the con-
tinuum equations apply.30 Unlike the deformation
gradient itself, neither the elastic tensor nor the growth
tensor are gradients of a vector field. Instead, we pre-
scribe the growth tensor constitutively and then
determine the elastic tensor, Fe ¼ F $ Fg%1, accordingly.
On the time scales of seconds, minutes, or hours, brain
is a poroviscoelastic material.18 On the time scales of
days, weeks, or months relevant for brain develop-
ment, we can approximate brain tissue as a growing
elastic material.10 We adopt a Neo-Hookean free
energy function for both gray and white matter tissue,

w ¼ 1

2
L ln2ðJeÞ þ 1

2
G ½ tr ðbeÞ % 3% 2 lnðJeÞ (; ð3Þ

with the Lamé constants L and G. We parameterize the
free energy function exclusively in terms of the elastic
left Cauchy Green tensor, be ¼ Fe $ Fet, and the elastic
Jacobian Je, assuming that only the elastic deforma-
tion generates stress. We obtain the Kirchhoff stress s
from the standard Coleman–Noll evaluation of the
dissipation inequality in open system thermodynam-
ics,33

s ¼ 2
@w
@be
$ be ¼ ½L lnðJeÞ % G ( Iþ G be ; ð4Þ

where I denotes the second order unit tensor. It re-
mains to specify the growth kinematics and growth
kinetics for gray and white matter tissue.

Gray Matter Grows via Neural Progenitor Division

The gray matter tissue of the cerebral cortex is
mainly made up of neurons, which migrate to the
surface of the brain along radial glial cells.56 Unlike
the cortical surface area, the cortical thickness is
remarkably preserved across all mammals.27 While
the cortical thickness changes during the early stages
of neurodevelopment,47 during the later stages, it is
primarily the change in surface area that triggers
cortical folding. We thus model gray matter growth
as in-plane area growth and assume that the response
normal to the cortical surface is purely elastic. The
resulting gray matter growth tensor is transversely
isotropic with a preferred direction n0 normal to the
cortical surface,60

Fg ¼
ffiffiffiffiffi
#g
p

Iþ 1%
ffiffiffiffiffi
#g
ph i

n0 ) n0 : ð5Þ

The gray matter growth parameter #g represents the
increase in cortical surface area,

#g ¼ jjJgFg%t $ n0jj ¼ det ðFgÞ ¼ Jg ; ð6Þ

which is identical to the increase in gray matter volume
Jg. In gray matter, the multiplicative decomposition of
the deformation gradient (1) translates into the multi-
plicative decomposition of the total cortical area
change # into an elastic area change #e and area
growth #g,

# ¼ jjJF%t $ n0jj ¼ #e #g : ð7Þ

Because of its simple rank-one update structure, we
can invert the growth tensor using the Sherman–
Morrison formula,

Fg%1 ¼ 1ffiffiffiffiffi
#g
p Iþ

ffiffiffiffiffi
#g
p

% 1ffiffiffiffiffi
#g
p n0 ) n0 : ð8Þ

We can then explicitly calculate the gray matter elastic
tensor,

Fe ¼ 1ffiffiffiffiffi
#g
p Fþ

ffiffiffiffiffi
#g
p

% 1ffiffiffiffiffi
#g
p n) n0 ; ð9Þ

and its elastic left Cauchy Green deformation tensor,

be ¼ 1

#g
bþ 1% 1

#g

" #
n) n ; ð10Þ

in terms of the grown cortical normal, n ¼ F $ n0, and
the total left Cauchy Green deformation tensor,
b ¼ F $ Ft. We suggest a linear kinetic model for gray
matter growth,

_#g ¼ Gctx; ð11Þ

where Gctx the cortical growth rate, which we can
eventually correlate to several corticogenetic events:
During the early stages of development, the increase of
cortical volume is associated with the division of neural
progenitor cells. Symmetric division is correlated to an
increase in cortical surface area;49 asymmetric division
is correlated to an increase in cortical thickness.39

During the later stages of development, tangential ex-
pansion is associated with the maturation of the neo-
cortex caused by an increase of neurons in size, the
formation of cortico-cortical connections, and the ad-
dition of intracortical glia cells.56

White Matter Grows via Chronic Axonal Elongation

The white matter tissue underneath the cerebral
cortex consists largely of myelinated axons. Axons are
capable of growing in length when exposed to chronic
overstretch.8,14 We thus model white matter growth as
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fiber growth and assume that the response normal to
the fiber direction is purely elastic. The resulting white
matter growth tensor is transversely isotropic with a
preferred direction a0 along the axonal direction,59

Fg ¼ Iþ ½ kg % 1 ( a0 ) a0 : ð12Þ

The white matter growth parameter kg represents the
increase in length of the axonal vector ag ¼ Fg $ a0,

kg ¼ jjagjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 $ Fgt $ Fg $ a0

p
¼ det ðFgÞ ¼ Jg ; ð13Þ

which is identical to the increase in white matter vol-
ume Jg and thus directly correlated to the cumulative
length of all axons in the white matter tissue. In white
matter, the multiplicative decomposition of the defor-
mation gradient (1) translates into the multiplicative
decomposition of the total stretch along the axon k
into an elastic part ke and a growth part kg,

k ¼ jjajj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 $ Ft $ F $ a0

p
¼ ke kg : ð14Þ

Again, we invert the growth tensor using the Sherman–
Morrison formula,

Fg%1 ¼ Iþ 1% kg

kg
a0 ) a0; ð15Þ

to explicitly calculate the white matter elastic tensor,

Fe ¼ Fþ 1% kg

kg
a) a0; ð16Þ

and its elastic left Cauchy Green deformation tensor,

be ¼ bþ 1% kg2

kg2
a) a ; ð17Þ

in terms of the current axonal vector, a ¼ F $ a0. White
matter growth is primarily a result of chronic axonal
elongation upon prolonged overstretch.8 This suggests
the following ansatz,

_kg ¼ Gaxn ½ ke % k0 ( ; ð18Þ

where Gaxn is the rate of axonal growth. This implies
that the increase in white matter volume is an emergent
property from chronic axonal lengthening: when elas-
tically stretched beyond the homeostatic baseline value
of k0, axons lengthen, when unstretched they shorten.14

Figure 2 illustrates directional axonal elongation as a
mechanism for anisotropic white matter growth. Table
1 summarizes the individual mechanisms and mathe-
matical models for gray and white matter growth.

Computational Model of Growth

To solve the governing equations of brain develop-
ment, we implement the gray and white matter growth
models as user-defined material subroutines in the

nonlinear finite element program Abaqus/Standard.1

To characterize brain development at each instant in
time t, we introduce the number of cortical neurons #g

and the axonal growth kg as internal variables in the
gray and white matter regions. We solve their evolu-
tion equations (11) and (18) locally on the integration
point level using a finite difference approximation in
terms of the current time increment Dt ¼ t% tn,

_#g ¼ ½#g % #g
n (=Dt and _kg ¼ ½ kg % kgn (=Dt : ð19Þ

Gray matter growth is linear in time. We update the
cortical surface area using a simple single-step
modification,

#g  #g þ Gctx t : ð20Þ

White matter growth depends nonlinearly on the ax-
onal growth itself. We update axonal growth using an
incremental iterative Newton Raphson scheme,

kg  kg % Rk =Kk ; ð21Þ

where Rk is the local residual,

Rk ¼ kg % kgn % Gaxn k
kg
% k0

" #
Dt ; ð22Þ

and Kk is its linearization with respect to the axonal
growth kg,

K k ¼ d Rk

d kg
¼ 1þ Gaxn k

ðkgÞ2
Dt : ð23Þ

unstretched
ungrown

stretched
ungrown

stretched
grown

compressed
unshrunk

compressed
shrunk

λe = 1.0
λg = 1.0

λe > 1.0
λg = 1.0

λe = 1.0
λg > 1.0

λe < 1.0
λg > 1.0

λe = 1.0
λg = 1.0

FIGURE 2. Axon at its unstretched, ungrown state of
homeostatic equilibrium; at its stretched, ungrown state of
acute thinning upon stretching; at its stretched, grown state
having recovered its original diameter after growth; at its
compressed, unshrunk state exhibiting slackening upon
stretch release; and at its compressed, shrunk state having
recovered its original diameter after negative growth; from left
to right.

Emerging Brain Morphologies from Axonal Elongation 1643

Author's personal copy



We iteratively update axonal growth (21) until we
achieve convergence and the residual (22) falls below a
user-defined threshold value. Once we have determined
the current number of cortical neurons #g and axonal
growth kg, we can successively calculate the growth
tensors in gray and white matter Fg using Eqs. (5) and
(12), the elastic tensors Fe using Eqs. (9) and (16), the
left Cauchy Green deformation tensors be using Eqs.
(10) and (17), and the Kirchhoff stresses s using
Eq. (4).

For the global righthand side vector, the user-de-
fined subroutine in Abaqus/Standard utilizes the
Cauchy or true stress, r ¼ s = J, for which we simply
divide the Kirchhoff stress (4) by the Jacobian,

rabaqus ¼ ½ ½L lnðJeÞ % G ( Iþ G be (=J : ð24Þ

For the global iteration matrix, the user-defined sub-
routine in Abaqus/Standard utilizes the Jauman rate of
the Kirchhoff stress divided by the Jacobian,60

cabaqus ¼ ½ ce þ cg þ cs ( = J : ð25Þ

The first term, ce ¼ 4 be $ ½@2w=@be ) @be( $ bejFg, the
elastic tangent, is the Hessian of the free energy func-
tion (3) at constant growth Fg,

ce ¼ L I) Iþ ½G% L lnðJeÞ (½ I)IþI)I ( : ð26Þ

The second term, cg ¼ 4 be $ ½@2w=@be ) @be( $ bejF, the
growth tangent, is the Hessian of the free energy
function (3) at constant deformation F. Gray matter
growth does not depend on deformation and its
growth tangent vanishes identically, cg ¼ 0. White
matter growth depends on deformation, and its tan-
gent takes the following format,59

cg ¼ % Gaxn

k kg Kk ½L Iþ 2G

ðkgÞ2
a) a ( ) ½ a) a (Dt : ð27Þ

The third term contains the correction term for the
Jauman rate,60

cs ¼ 1

2
½ s)Iþ I)sþ s)Iþ I)s ( : ð28Þ

The local stress rabaqus of Eq. (24) and the local tangent
moduli cabaqus of Eq. (25) enter the righthand side vector
and the iteration matrix of the global Newton iteration.
Upon its convergence, we store the current number of
cortical neurons #g and the current axonal length kg

locally at the integration point level.

RESULTS

Growth of Single Axons

To calibrate the axonal growth rate Gaxn, the rate by
which axons grow in length when exposed to chronic
overstretch, we consult in vitro experiments of axonal
growth in response to displacement-controlled elonga-
tion.31 Figure 3, top, summarizes the applied stretch vs.
time for n = 23 individual chick sensory neurons. All
neuronswere stretched tok = 1.3–7.0 times their original
length over a period of 1–10 h, and allowed to recover at
that new length for 1–20 h. Figure 3, middle, shows a
representative neuron before stretching, immediately
after rapid stretching of 3 h, and after a period of re-
covery of 18 h. Figure 3, bottom, summarizes the re-
sulting diameter vs. time for all 23 axons in response to
the loading-holding experiments. The black dots indicate
the experimentalmeasurements at discrete points in time.

For the simulation, we represent the growing axon
as a three-dimensional cylinder with one end fixed and
one end stretched. We elongate each axon according to
the stretch history in Fig. 3, top, allow it to gradually
recover using our subcortical growth model, and pre-
dict the corresponding diameter in Fig. 3, bottom. To
calibrate the axonal growth rate Gaxn, we vary Gaxn

between 0.0 and 0.5/h in increments of 0.01/h. For
each simulation, we calculate the error between all
experimentally measured and computationally pre-
dicted axonal diameters as the distance between all
dots and curves in Fig. 3. Figure 4 illustrates the error
function, which is convex within the analyzed interval
and takes a minimum at Gaxn = 0.08/h. The solid lines
in Fig. 3 represent the computational simulations for
this calibration with Gaxn = 0.08/h.

TABLE 1. Gray and white matter growth. Underlying mechanisms and mathematical models.

Gray matter White matter

Microstructural mechanisms Cell division, cell growth, formation of connections Stretch-induced axonal growth
Macrostructural effect Increase in surface area Increase in volume
Kinematics Area growth Fg ¼

ffiffiffiffiffiffi
#g
p

Iþ ½1%
ffiffiffiffiffiffi
#g
p
(n0 ) n0 Fiber growth Fg ¼ Iþ ½kg % 1(a0 ) a0

Kinetics Cortical area _#g ¼ Gctx Axonal length _kg¼Gaxn ½ke%k0(
Parameters Gctx cortical growth rate, n0 cortical normal Gaxn axonal growth rate, a0 axon orientation
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Growth of Brain Slices

To explore the impact of the axonal orientation on
brain growth, we perform finite-element simulations of
rectangular brain slices using Abaqus/Standard1 with
our own user material subroutines for gray and white
matter. We follow established protocols5,12,13 and dis-
cretize a 3 cm 9 1 cm domain with an initial cortical
thickness of 0.05 cm by 200 9 30 quadrilateral linear
brick elements. We use 26 elements across the white
and 4 across the gray matter domain, assume a plane
strain state, and allow the boundary nodes to slide
freely along the domain edges. We model the gray and
white matter tissue as Neo-Hookean elastic and choose
the stiffness contrast, the ratio between gray and white
matter stiffness, as Egray=Ewhite ¼ 3:0, which results in

Lamé-constant ratios of three. To trigger the forma-
tion of instabilities, we apply a small sinusoidal per-
turbation with an amplitude of 1/50 times the cortical
thickness in the center region. We assume that axons
grow if they sense a stretch above ke>k0 and retract
for a stretch below ke<k0, where k0 ¼ 1:0. We fix the
axonal growth and retraction rate to Gaxn ¼ 0:08/h
according to the previous section and vary the growth
contrast, the ratio between gray and white matter
growth, as Gctx=Gaxn ¼ 10%2:5; 10%2; 10%1:5; 10%1. Mo-
tivated by the diffusion spectrum image in Fig. 7, we
focus on four different axonal orientations a0: ran-
domly isotropic, radially straight I-shaped, radially
curved V-shaped, and radially curved U-shaped. We
compare the randomly isotropic growth model against

normalized axonal diameter [-] vs. stretching time [h]

axonal stretch [-] vs. stretching time [h]

10um

FIGURE 3. Growth of single axons. Stretch-time curves for 23 axons summarize the individual applied loading-holding histories,
top. Images display a representative axon before stretching, immediately after stretching, and after recovery, middle. Normalized
diameter-time curves for 23 axons summarize the individual growth response to loading-holding experiments, bottom. Black dots
indicate experimental measurements; solid lines represent computational predictions for an axonal growth rate of Gaxn ¼ 0:08/h.

Emerging Brain Morphologies from Axonal Elongation 1645

Author's personal copy



a plain isotropic growth model with Fg ¼ JgI, for
which we drive the evolution of the growth parameter,
_Jg ¼ Gaxn½Je % J0(, by the volumetric elastic over-
stretch, ½Je % J0(.11

Sensitivity with Respect to Growth Contrast

Figures 5 and 6, bottom, illustrate the evolving
brain surface morphology for varying growth contrasts
Gctx=Gaxn. As the growth ratio between gray and white
matter increases, from top to bottom, the gray matter
layer grows faster relative to the white matter core. The
top rows of Figs. 5 and 6 display the largest amount of
axonal growth and axonal retraction, indicated by the
red gyri and blue sulci. The bottom rows show almost
no axonal growth and retraction, indicated by the
homogeneous green growth profiles. With increasing
growth ratio, from top to bottom, the influence of
white matter growth, and with it the degree of
anisotropy, becomes less pronounced, and the surface
morphology becomes more regular. The side-by-side
comparison with the plain isotropic growth model in
Fig. 5, top, confirms this trend: With increasing growth
ratio, the randomly isotropic model, bottom, becomes
more homogeneous; its growth values and surface
morphologies become more regular and resemble the
plain isotropic model, top.

Figures 7 and 8 illustrate the stress profiles for
varying growth contrasts Gctx=Gaxn. The maximum
principal stresses for the plain and randomly isotropic
models in Fig. 7 seem relatively insensitive to the growth
contrast, both in direction and in magnitude. The
maximum principal stresses for the anisotropic models
in Fig. 8, however, vary largely with varying growth

contrast: With increasing growth ratio, from top to
bottom, the stress profiles of the I-, V-, and U-shaped
axonal orientations become more homogeneous and
resemble the plain isotropic model in Fig. 7, top.

Sensitivity with Respect to Axonal Orientation

Figures 5 and 6, bottom, illustrate the evolving
brain surface morphology for varying axonal orienta-
tions a0. The axonal orientation clearly impacts the
folding pattern, the gyral wavelength, and the sulcal
depth: While the isotropic axonal orientation in Fig. 5
creates a regular sinusoidal surface morphology with
short gyral wavelengths and moderate sulcal depths,
the anisotropic axonal orientations in Fig. 6 generate
irregular surface morphologies with long gyral wave-
lengths and pronounced sulcal depth.

3

4

5

6

7

8

9

1

relative diameter error vs. axonal growth rate

Gaxn =0.08/h

Gaxn3.02.01.00.0 ]h/1[

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

FIGURE 4. Relative diameter error for varying axonal growth
rates. The error between all experimentally measured and
computationally predicted axonal diameters is a convex
function with a minimum at Gaxn 5 0.08/h.

FIGURE 5. Growth in brain slices for isotropic white matter
growth, top, and anisotropic white matter growth with ran-
domly isotropic axonal orientation, bottom, at varying growth
contrasts. For each set, the growth contrast between gray and
white matter varies between 10%2:5;10%2;10%1:5;10%1, from top
to bottom. The black streamtraces illustrate the local axonal
orientation a0 of the anisotropic growth model; the color
contours indicate the local isotropic growth Jg , top, and local
axonal growth kg , bottom, and number of cortical neurons #g :
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Figures 7 and 8 illustrate the stress profiles for
varying axonal orientations a0. The top rows of Fig. 8,
with the smallest growth ratio, display the largest effect
of white matter growth, and with it the largest degree
of anisotropy. Their maximum principal stress direc-
tions and magnitudes vary significantly between the I-,
V-, and U-shaped axonal orientations. As the growth
ratio increases, from top to bottom, the stress profiles
become more regular and resemble the plain isotropic
model in Fig. 7, top.

Growth of Brain Morphologies

To explore the impact of the axonal orientation on
evolving brain morphologies, we perform finite-ele-

ment simulations of ellipsoidal brain geometries using
our model for gray and white matter. We discretize the
ellipsoid with 27,216 tri-linear brick elements, 23,328
for the white matter core and 3888 for the two-element
thick gray matter layer. The ellipticity of the ellipsoid is
1.2 with a long axis diameter of 16.8 cm and short axis
diameters of 14 cm. We assume symmetry in the three
axial planes. Unlike the previous example, the ellipsoid
possesses a natural heterogeneity induced by its non-
homogeneous curvature. This implies that it folds
naturally upon growth without requiring additional
perturbations.5 Similar to the previous example, we
model the gray and white matter tissue as Neo-Hoo-
kean elastic with a stiffness contrast of Egray=Ewhite ¼
3:0 resulting in Lamé-constant ratios of three. We as-
sume that axons grow if they sense a stretch above
ke>k0 and retract for a stretch below ke<k0, where
k0 ¼ 1:0. The axonal growth and retraction rate is
Gaxn ¼ 0:08/h and we assume a growth contrast of
Gctx=Gaxn ¼ 10%1:5. We simulate four different axonal
orientations a0: unidirectionally one-dimensional, pla-
nar radially outward-pointing two-dimensional, radi-
ally outward-pointing three dimensional, and isotropic
with no pronounced axonal direction.12

Figure 9 illustrates the brain surface morphology
for the four different axonal orientations. As the de-
gree of white matter isotropy increases, from left to
right, the cortex becomes more regularly folded. The
axonal orientation clearly impacts the folding pattern,
the gyral wavelength, and the sulcal depth: in regions
where axons are oriented perpendicular to the surface,
the cortex becomes locally gyrencephalic with gyri of
maximum axonal growth and sulci of maximum ax-
onal shortening; in regions where axons are oriented
parallel to the surface, the cortex remains locally
lissencephalic.

DISCUSSION

Motivated by the hypothesis that axonal growth in
the human brain plays a central role in modulating
surface morphology, we have established a mechanistic
model for brain development using the continuum
theory of finite growth.

On the macroscopic scale, cortical folding is tightly
regulated by the interplay between the area increase of
the gray matter surface and the volume increase of the
white matter core. To characterize these phenomena,
we have adopted the multiplicative decomposition of
the deformation gradient into an elastic and a growth
part. Key to the success of this concept is the appro-
priate definition of the growth part, a second order
tensor, for which we need to postulate appropriate
kinematics, i.e., equations that tell us how this tensor is

FIGURE 6. Growth in brain slices for anisotropic axonal
orientation at varying growth contrasts. Diffusion spectrum
imaging of the adult human brain reveals regionally varying
cortical normals n0 and axonal orientations a0, which induce
anisotropic gray and white matter growth (a), modified with
permission from.3 Axons display radially straight I-shaped (b),
radially curved V-shaped (c), and radially curved U-shaped (d)
orientations. The growth contrast between gray and white
matter varies between 10%2:5; 10%2;10%1:5;10%1, from top to
bottom. The black streamtraces illustrate the local axonal
orientation a0; the color contours indicate the local axonal
growth kg and number of cortical neurons #g :
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FIGURE 7. Stress in brain slices for isotropic white matter growth, top, and anisotropic white matter growth with randomly
isotropic axonal orientation, bottom, at varying growth contrasts. For each set, the growth contrast between gray and white matter
varies between 10%2:5; 10%2;10%1:5;10%1, from top to bottom. The black lines illustrate the directions of maximum principal stress;
the color contours indicate the maximum principal stress along this direction.

FIGURE 8. Stress in brain slices for anisotropic axonal orientation at varying growth contrasts. The axonal orientation varies
between I-shaped, radially curved V-shaped, and radially curved U-shaped, from left to right. The growth contrast between gray and
white matter varies between 10%2:5;10%2;10%1:5;10%1, from top to bottom. The black lines illustrate the directions of maximum
principal stress; the color contours indicate the maximum principal stress along this direction.
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populated, and appropriate kinetics, i.e., equations
that define how it evolves in time. Here we derive these
equations as emergent properties from cellular and
molecular events.

On the microscopic scale, the gray matter surface
area is closely correlated to the number of cortical
neurons, and an increase in surface area is modulated
by neural progenitor division. Since neurons stack ra-
dially to form cortical columns, we propose to popu-
late the gray matter growth tensor transversely
isotropically with the brain surface normal as the
pronounced microstructural direction. White matter
volume, on the contrary, does not scale with cell
number but rather with cell size, or, more specifically,
with the length of the neuronal axons. Axons grow in
length when their two ends are pulled apart, and an
increase in volume is modulated by mechanical stretch.
Since axons are arranged in bundles that connect dif-
ferent regions of the brain, we propose to populate the
white matter growth tensor transversely isotropically
with the regionally varying axonal orientation as the
pronounced microsturctural direction.

Axonal Growth is Rate Limited by Mass Production

In close agreement with in vitro experiments of
chronic axon elongation, our model predicts an im-
mediate axonal thinning in response to stretch, fol-
lowed by a gradual axonal thickening as the axon
recovers. Initially, there is no axonal growth, kg ¼ 1:0,
and the applied stretch is entirely elastic, k ¼ ke. Over
time, the applied stretch is gradually accumulated by
growth, k ¼ kg, the elastic stretch returns to its baseline
value, ke ¼ k0, and the axonal tension decreases. Our
simulations demonstrate that a single model pa-
rameter, the axonal growth rate, explains axonal
elongation experiments for a wide range of loading
conditions, including stretches ranging from less than
50% to more than 700% and recovery times from 1 to
20 h.31 Our calibrated axonal growth rate of
Gaxn ¼ 0:08/h indicates that axons actively respond to
environmental stimuli within the order of hours.35 In
vivo experiments have shown that axonal elongation
activates mechanotransduction pathways which con-
verge in the cellular production of mitochondria to
maintain a constant mitochondrial density along the
axon.50 This suggests that mass production and
transport, intracellular phenomena associated with
time scales of minutes to hours, are the rate limiting
factors of axonal growth.36

Axonal Elongation Regulates White Matter Growth

The ability of neurons to change their length in re-
sponse to environmental cues has been documented for
more than three decades.8 Various studies have shown
that axons respond to mechanical stretch through ac-
tive growth rather than passive elongation;14 they try
to achieve and maintain an optimal density along their
length;35 they grow in the direction of applied ten-
sion;19 and they retract if the tension is relieved.32 The
ability to dynamically adjust their length is an impor-
tant feature of axons during growth and development:
neurons are forced to maintain connection between
different parts of the body as they grow apart, which,
in the case of the giraffe’s neck, occurs at rates of up to
0.08cm/h.38 Here we propose a multiscale approach to
naturally correlate growth of individual axons on the
microstructural scale with a volume increase of white
matter tissue on the macrostructural scale. Rather than
introducing the material parameters of white matter
growth on a phenomenological level,12 multiscale
modeling allows us to introduce material parameters
with a clear physiological interpretation. As Fig. 3
documents, our axonal growth rate Gaxn follows
naturally from length-diameter measurements during
controlled axonal elongation.

FIGURE 9. Surface morphology for varying axonal orienta-
tion. The degree of anisotropy varies between unidirectionally
one-dimensional, planar radially outward-pointing two-di-
mensional, radially outward-pointing three dimensional, and
isotropic, from left to right. As the degree of white matter
isotropy increases the cortex becomes more regularly folded.
In regions where axons are oriented perpendicular to the
surface, the cortex becomes locally gyrencephalic with gyri of
maximum axonal growth and sulci of maximum axonal
shortening; in regions where axons are oriented parallel to the
surface, the cortex remains locally lissencephalic. The color
contours indicate the local axonal growth kg :
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Axonal Orientation Introduces Symmetry Breaking

Previous attempts to understand cortical folding are
based on phenomenological, isotropic models for white
matter tissue.5 While these models provide valuable
functional relations between cortical wavelength,
thickness, and stiffness, they typically predict irregular
folding patterns on regular, homogeneous geometries.11

On irregular geometries, for example on three-dimen-
sional ellipsoids with regionally varying curvature, even
isotropic models are capable of reproducing complex
folding patterns.51,52 In addition to local variations in
geometry,6 local variations in thickness,51 stiffness,54

and growth53 are other potential sources to trigger
inhomgeneous folding. In the post-buckling regime, the
initial sinusoidal folding pattern typically becomes even
more complex and transitions into cusped sulci48,51 or
undergoes period doubling and tripling.9 In reality,
however, white matter tissue is highly anisotropic with
well-defined, regionally varying microstructural orien-
tations.16 Recent advancements in neuroradiology now
provide precise mappings of the brain’s axonal network
from diffusion spectrum imaging.3 The concept of
structural tensors allows us to seamlessly integrate this
microstructural information and embed our directional
axonal growth model into realistic brain geometries.
Rather than using an axisymmetric ellipsoidal model,5

we adapt a fully three-dimensional ellipsoidal model, to
explore a wide range of axonal orientations. Our results
demonstrate that axonal growth naturally generates
structural anisotropy, intrinsically induces symmetry
breaking, and predicts more physiological, less regular
folding patterns with varying gyral wavelengths and
sulcal depths.

Axons Do Not Pull on the Brain—The Brain Pulls
on the Axons

Axonal tension has long been believed to be a
regulator of cortical folding.55 The human cortex
experiences a period of maximum growth during weeks
23 and 37 of gestation, where it turns from a flat surface
into a wrinkled structure and approximately triples its
area.46 For our model with _#g ¼ Gctx, this suggests an
upper limit of cortical growth with Gctx ¼ 10%2:5/hr.
Axons, on the contrary, respond quickly to mechanical
loading and can double their length within the order of
hours.35 For our model with _kg ¼ Gaxn, our experiments
reveal an average axonal growth rate of Gaxn ¼ 10%1/h.
These estimates suggests a growth contrast on the order
of Gctx=Gaxn ¼ 10%1:5. Recent studies have shown that
the growth contrast is an important regulator of cortical
complexity, and that smaller growth contrasts trigger
larger wavelengths.5 In the limit of Gctx=Gaxn ! 0, we
would recover the extreme case of a growing graymatter

layer on a perfectly viscous, fluid-like white matter
substrate resulting in infinite wavelengths.7,28 On the
time scale of human development with Gctx=Gaxn ¼
10%1:5, white matter behaves like a highly viscous solid
that can respond almost instantly to mechanical
stretch.12,58 In our case, wemodel white matter viscosity
as anisotropic with a pronounced microstructural di-
rection, the axonal orientation a0.

16 When sensing me-
chanical stretch, axons quickly resume their new resting
length and the stretch-induced axonal tension rapidly
returns to its physiological baseline value. This suggests
that—rather than axons pulling on the brain to induce
cortical folding55—the folding cortex pulls on the axons
to trigger axonal elongation and white matter growth.58

White Matter Growth Stabilizes Morphogenesis

Our simulations suggest that an overall increase in
white matter volume is an important contributor to
shape brain morphogenesis. Pioneering models of brain
development suggested an interpretation of cortical
folding as the buckling of a growing surface on a non-
growing, elastic foundation.42 To simulate folding in-
stabilities, however, these models required a non-
physiological stiffness contrast of up to three orders of
magnitude. Recent indentation tests have shown that
gray and white matter display rather similar stiffnesses,
both of the order of 1 kPa.10 These values agree with
recent in vivo measurements using magnetic resonance
elastography.15 Introducing white matter growthmakes
cortical folding possible, even for small stiffness con-
trasts.5 Models with white matter growth also display a
better agreement withmicrodissection experiments than
models without growth.58 Specifically, microdissection
assays have revealed significant radial tension in the
developing gyri, but no tension across the gyri,6 as ini-
tially postulated by the axonal tension hypothesis.55

This is in excellent agreement with our maximum prin-
cipal stress directions in Fig. 8, which display a pro-
nounced radial orientation in the individual gyri, but
virtually no tension across the gyri. This suggests that
white matter growth, ideally of anisotropic nature, is
critical to stabilize morphogenesis and accurately cap-
ture the mechanophysiology of cortical folding.

Limitations and Potential Improvements

While our model shows potential to further our
understanding of cortical folding, this is only a pre-
liminary study. We suggest to address the following
limitations as this research continues: (i) In this study,
we have focused on the role of anisotropy in white
matter growth. Axonal orientation might also affect
the elastic response of white matter; in fact, recent
research suggests that white matter tissue is indeed
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anisotropic.54 In our model, incorporating anisotropy
would imply supplementing the free energy function
(3) with a term in the fourth invariant, to captures
anisotropic effects through the elastic axonal stretch
ke. (ii) In our current model, throughout the entire time
interval of interest, all axons maintain their predefined
stiffness and orientation. The axonal stiffness depends
critically on the degree of myelination may change
substantially during development. Experiments have
shown that axons grow in the direction away from the
tension they experience.20 This suggests that the axonal
orientation might change during development or dis-
ease progression, especially as new connections form.
Incorporating axonal reorientation could improve the
current model and make it more realistic.26 This would
be critical to capture the differences between the con-
nectivity in the developing cortex and the adult cortex
in Fig. 6. (iii) While axons are highly aligned in some
regions of the brain, for example in the corpus callo-
sum,37 they exhibit higher levels of dispersion else-
where. Currently, our model only captures a single
axonal orientation a0, but future work could include a
dispersion parameter to allow for different levels of
anisotropy.21 Additionally, the theory of axonal ten-
sion relies on regionally varying axonal densities to
draw strongly interconnected areas closer together,
while weakly connected areas drift further apart.55

Here we assign each integration point its own axonal
orientation, but do not distinguish different axonal
densities, which we could easily incorporate through
an additional order parameter. (iv) One of the most
obvious areas for improvement is the need for more
realistic modeling, both in terms of model geometry
and model parameters. On the axonal level, our growth
model is calibrated by experiments with cultured chick
sensory neurons, which may behave very differently
from growing axons in an in vivo setting, where growth
is also guided by wiring among different cortical
regions. On the whole brain level, our current model is
limited to idealized geometries and idealized axonal
orientations. Once we have gained a better under-
standing of the model as a whole, we will test it in
realistic brain geometries based on magnetic resonance
images with axonal orientations from diffusion tensor
imaging. We are also working in close collaboration
with neuroradiologists11 to confirm that our micro-
scopically motivated model indeed predicts a macro-
scopically realistic response in terms of gray matter
surface area and white matter volume.

CONCLUSION

We have established the first three-dimensional
finite element model of the developing brain to incor-

porate white matter anisotropy. This addition lends a
multiscale approach to the modeling of brain devel-
opment, connecting the mechanical behavior at the
tissue and organ level with the response of axons on
the cellular level. Axons, the major components of
white matter tissue, have long been known to grow
under mechanical stimuli and retract upon their re-
moval. Here we calibrated the rate at which axons
growth by simulating a variety of loading scenarios
and comparing their long-term length-diameter re-
sponse. We then utilized this growth rate in simula-
tions of growing brain slices to explore the role of
axonal orientation in gyrogenesis and pattern forma-
tion. Our simulations suggest that axonal growth is an
important regulator of brain surface morphology: in-
creasing axonal growth along specific axonal directions
induces symmetry breaking and increases surface ir-
regularity, gyral wavelengths, and sulcal depths.

Understanding the mechanisms of gyrogenesis is an
important medical problem as more and more studies
are finding relationships between folding abnormalities
and psychological or mental disorders.17 Some of these
disorders appear to be associated with atypical con-
nectivity, irregular folding patterns, and abnormal
wavelengths or sulcal depths.25 This suggests that there
is some functional correlation between the connectivity
of the brain, its folding, and its function or dysfunc-
tion. By interpreting anisotropic white matter growth
as an emergent property from directional axonal
elongation, our model may shed light on the interplay
between connectivity and folding, and, ultimately, on
its relevance in neurological disorders including
epilepsy, schizophrenia, and autism.
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